重庆大学绿色化学化工研究中心
Center of Green Chemistry and Chemical Engineering
刘仁龙,男,1966年2月生,重庆大学绿色化学化工研究中心教授,博士生导师,重庆大学化学化工学院党委书记,重庆市化学化工学会常务副理事长。
1988年7月重庆大学应用化学专业毕业并留校任教,2004年6月取得重庆大学钢铁冶金专业博士学位。2005年9月至2006年3月在美国University of Missouri-Columbia做访问学者,2006年11月-12月在德国 Technische Universitat Dresden Institute访问研修。
长期从事绿色化学化工领域的教学和科研工作,在矿产资源绿色开发利用、化工过程强化技术及智能化装备研发、污染物治理及资源综合利用等方向具有丰富的研究经历。先后主持“国家科技支撑计划”“国家自然科学基金委-云南联合基金”“国家重点研发计划课题”“国家自然科学基金面上”“重庆市自然科学基金重点”“重庆市基础科学与前沿技术研究专项”等10余项国家及地方科研项目,参与“国家高技术发展研究计划(863计划)”重点项目、 “国家军工项目”“重庆市科技攻关项目”、“重庆市121科技支撑示范项目”等国家及省部级重要科技项目20余项。在国内外重点刊物公开发表论文90余篇,其中SCI、EI收录40余篇,获权国家发明专利27项,研究成果获重庆市科技进步一等奖2项,中国循环经济协会科学技术一等奖1项,中国循环经济协会专利金奖1项,中国国际发明展览会金奖1项。
Email:lrl@cqu.edu.cn,Tel(office):023-65678935,Tel(mobile):13608319127
研究团队网址:www.taochangyuan.com
矿产资源绿色开发利用方向:针对矿产资源开发利用中存在的资源利用率低、能耗高、污染重等问题,开展理论创新、技术创新和装备创新,在锰、钡、钒、磷等资源的绿色开发利用方面形成特色。
化工过程强化及智能化装备研究方向:应用流场混沌混合模拟,通过电场、微波场、温度场等多场耦合强化,提高动量、热量和质量传递效率,增强化工过程能力。在化工过程强化新理论、新技术、新工艺的研究方面形成特色,特别是在化工过程强化装备的智能化改造及研发方面具有特色和优势。
污染物治理及资源综合利用研究方向:主要针对燃煤企业的大气污染,开展污染物控制技术与装备研发,重点研发烟气脱硝催化剂及再生,探索污染物控制新理论、新技术、新工艺;针对固体废弃物的减量化、无害化及资源化开展研究,形成理论体系,研发成套技术,开发关键装备,推进示范应用;针对工业废水的资源化循环利用开展了技术研究、装备开发和工程实践。
[1] Zhou Yuhe, Zheng Guocan, Liu Zuohua, Liu Renlong, Tao Changyuan. Multi-stage precipitation for the eco-friendly treatment of phosphogypsum leachates using hybrid alkaline reagents[J]. Journal of water process engineering, 2023, 53.
[2] Zhou Yuhe, Zheng Guocan, Cen Shaodou, Liu Renlong, Tao Changyuan. Leaching of phosphate ores with lower dissolution of metallic impurities: the dual role of sodium oleate[J]. RSC ADVANCES, 2023, 10600-10609.
[3] Xuejian Huo, Lanfeng Guo, Renlong Liu, Changyuan Tao, et al. Revealing Mechanism of Hemihydrate–Dihydrate Phosphogypsum Transformation and Minimizing Phosphorus Loss in Wet Process Phosphoric Acid[J]. Industrial & Engineering Chemistry Research, 2023, 62, (50):21590-21598.
[4] Zhou Yuhe, Zheng Guocan, Long Youqin, et al. Advanced oxidation processes for wet-process phosphoric acid: Enhanced phosphorus recovery and removal of organic matters[J]. Hydrometallurgy, 2022, 210.
[5] Yuhe Zhou, Shanshan Wu, Renlong Liu, Zuohua Liu, Changyuan Tao. Efficient recovery of manganese and ammonia nitrogen from filter-pressing electrolytic manganese residue by organic complexation[J]. Journal of water process engineering, 2022, 45.
[6] Geng Chen , Chunling Jiang , Renlong Liu, et al. Leaching kinetics of manganese from pyrolusite using pyrite as a reductant under microwave heating[J]. Separation and Purification Technology, 2021, 277.
[7] Yuhe Zhou, Guocan Zheng, Renlong Liu*, Advanced oxidation processes for wet-process phosphoric acid: Enhanced phosphorus recovery and removal of organic matters[J]. Hydrometallurgy, 2022, 210.
[8] Renlong Liu*, Youqin Long, Yuhe Zhou, et al. Rigid-Flexible Combined Impeller Enhancement in Leaching of Phosphate Rock: A Kinetics Study[J]. ACS Omega, 2021, 48: 33206-33214.
[9] Geng Chen, Chunlin Jiang, Renlong Liu, et al. Leaching kinetics of manganese from pyrolusite using pyrite as a reductant under microwave heating[J]. Separation and Purification Technology, 2021.
[10] Renlong Liu*, Hongwei Wang, Zuohua Liu, et al. Electrokinetic remediation with solar powered for electrolytic manganese residue and researching on migration of ammonia nitrogen and manganese[J]. Journal of Water Process Engineering, 2020, 38.
[11] Bing Li, Jiancheng Shu, Renlong Liu, et al. An innovative method for simultaneous stabilization/solidification of PO4 3− and F− from phosphogypsum using phosphorus ore flotation tailings[J]. Journal of Cleaner Production, 2019, 235: 308-316.
[12] Jiancheng Shu, Wu Haiping, Renlong Liu*, et al. Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource[J]. Ecotoxico-ogy and Environmental Safety, 2018, 148: 220–227.
[13] Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of Hazardous Materials, 2016, 317:267-274.
[14] Simultaneous removal of ammonia and manganese from electrolytic metal manganese residue leachate using phosphate salt[J]. Journal of Cleaner Productio, 2016, 135:468-475.
[15] Manganese recovery and ammonia nitrogen removal from simulation wastewater by pulse electrolysis[J]. Separation and Purification Technology, 2016, 168:107-113.
[16] Electrokineti Remediation of Manganese and Ammonia Nitrogen from Electrolytic Manganese Residue[J]. Environmental Science and Pollution Research, 2015, 22:16004-16013.
[17] Enhanced extraction of manganese from electrolytic manganese residue by electrochemical[J]. Journal of Electroanalytical Chemistry, 2016, 780:32-37.
[18] Leaching of manganese from electrolytic manganese residue by electro-reduction, Environmental Tech-nology[J]. 2016. 12-17.
[19] Simultaneous removal of ammonia nitrogen and manganese from wastewater using nitrite by electroche-mical method[J]. Environmental Technology, 2017, 38:70-376.
[20] Enhanced discharge performance of electrolytic manganese anode slime using Calcination and pickling approach[J]. Journal of Electroanalytical Chemistry, 2017, 806: 15–21.
[21] Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource[J]. Ecotoxico-ogy and Environmental Safety, 2018, 148:220–227.
[22] Adsorption of methylene blue on modified electrolytic manganese residue: Kinetics, isotherm, thermodynamics and mechanism analysis[J].Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 351-359.
[23] Carbonation precipitation of manganese from electrolytic manganese residue treated by CO2 with alkaline additives [P]. 2015 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology, 2016.
[24] 电氧化法去除电解锰渣滤液中NH4+-N试验研究[J]. 湿法冶金, 2017, 36(03):242-246.
[25] 刚柔组合搅拌桨强化搅拌槽中流体混沌混合[J]. 化工学报, 2014, 65(1): 61-70.
[26] 电解锰渣的理化特性分析研究[J]. 金属材料与冶金工程, 2014, 42(01):3-17.
[27] 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6):2078-2084.
[28] 柔性桨强化高黏度流体混合的能效分析[J]. 化工学报, 2013, 64(10):3260-3265.
主要专利成果
[1] 一种固定电解锰渣中可溶性锰及氨氮的方法. 中国发明专利, ZL201310260888.8.
[2] 一种用双金属粉还原降解氯代有机废水的方法. 中国发明专利,ZL201110417669.7.
[3]一种电解锰渣二次浸出及锰回收的方法. 中国发明专利, 201410107528.9.
[4] 一种电解锰工艺中的氨氮废水的处理方法. 中国发明专利, 201410069647.X.
[5] 一种提高电流效率和防结晶的金属锰电解槽. 中国发明专利, ZL201010042022.6.
[6] 从电解锰过程产生复盐结晶中回收锰和镁的方法. 中国发明专利,201110049937.4.
[7] 一种锰矿浸取除铁的装置及其除铁方法. 中国发明专利, ZL2009102509706.
[8]一种用低品位软锰矿浸出硫酸锰的方法. 中国发明专利, 201110191394.X.
[9] 直接在压滤板框内无害化处理电解锰渣的方法. 重庆:CN104690080A, 2015-06-10.
[10] 一种强化矿物浸出的刚柔组合式搅拌桨[P]. 重庆:CN107433176A, 2017-12-05.
主要科技奖励
[1]电解金属锰节能减排关键技术研究与应用. 2014年重庆市科技进步一等奖.
[2] 搅拌反应器混沌混合强化技术及应用. 2016年重庆市科技进步一等奖.
[3]低品位锰矿湿法冶炼过程强化与循环利用关键技术. 2017年中国循环经济协会科学技术一等奖.
[4] 一种刚柔组合的搅拌桨. 2016年中国国际发明展览会金奖.
傅氏变换红外光谱仪; 紫外可见分光光度计;电化学工作站;气相色谱仪;扫描电镜;光学数码显微镜;烟气分析仪;物理吸附仪;程序升温化学吸附仪;催化剂活性评价成套装置;高压反应釜;大型搅拌反应器;射流搅拌器;程序升温马弗炉等。